

McDonald, Jeffrey

om:

Gilmore, Tyler J [Tyler.Gilmore@pnnl.gov]

nt:

Friday, March 07, 2014 10:06 AM McDonald, Jeffrey; Bayer, MaryRose

fo: Cc:

Bonneville, Alain; Greenhagen, Andrew

Subject:

Re: AoR Determination

Attachments:

Birkholzer and AOR-Eqn 1 and 2 Pressure-Worksheet-3-3-14.xlsx

Morning Jeff,

Attached are the Birkholzer calculations.

Tyler

From: <McDonald>, Jeff McDonald <mcdonald.jeffrey@epa.gov>

Date: Friday, March 7, 2014 6:36 AM

To: Tyler Gilmore <tyler.gilmore@pnnl.gov>, "Bayer, MaryRose" <Bayer.MaryRose@epa.gov>

Cc: Alain HR Bonneville <a lain.bonneville@pnnl.gov>, "Greenhagen, Andrew" < Greenhagen.Andrew@epa.gov>

Subject: RE: AoR Determination

Tyler,

hanks. We're going to talk about this today in our office.

Are you sending the Birkholzer calculations also this morning?

Thanks,

Jeff

Jeffrey R. McDonald, Geologist Underground Injection Control Branch U.S. EPA - Region 5 (312) 353-6288 mcdonald.jeffrey@epa.gov

From: Gilmore, Tyler J < Tyler. Gilmore@pnnl.gov >

Sent: Thursday, March 06, 2014 10:54 PM **To:** McDonald, Jeffrey; Bayer, MaryRose

Cc: Bonneville, Alain

Subject: RE: AoR Determination

Corrected Area

From: Gilmore, Tyler J

Sent: Thursday, March 06, 2014 8:07 PM

: Jeff McDonald (<u>mcdonald.jeffrey@epa.gov</u>); Bayer, MaryRose

: Bonneville, Alain

subject: AoR Determination

Jeff and Molly,

We do not believe there is a technical basis for establishing the Area of Review (AoR) based on the maximum extent of the 10 psi pressure front, however, we do recognize EPA's determination today that this will be the basis for AoR in the draft permit. We are now focused on how we can reasonably meet this determination.

The AoR based on the 10psi pressure front represents an area of approximately 2800 sq miles and presents a number of practical challenges. As you know the regulations require that we provide a map showing the injection well for which a permit is sought and the applicable area of review consistent with 146.84. Within the area of review, the map must show number or name, and location of all injection wells, producing wells, abandoned wells, plugged wells or dry holes, deepstratigraphic boreholes, State- or EPA-approved subsurface cleanup sites, surface bodies of water, springs, mines (surface and subsurface), quarries, water wells, other pertinent surface features including structures intended for human occupancy, State, Tribal, and Territory boundaries, androads. The map should also show faults, if known or suspected. Only information of public record is required to be included on this map.

We request that we may provide this information either through maps or by reference. For example providing an exhaustive list of "structures intended for human occupancy" is not practical, especially when several towns and villages are included in the resulting AoR. We can however, provide this information by reference by identifying the county assessors offices. Please advise us whether this approach will meet the intent of the regulations.

Respectfully Tyler

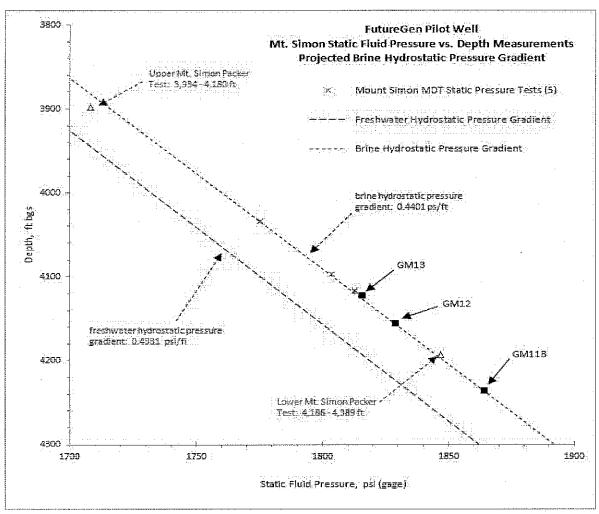
Depth	Total Pressure/Depth Data Set	54 545 54 545 54 545 54 547 54 547	
ft, bgs	psi (gage)		
1134.03	455.68	Silurian LS MDT	slope
1134.97	456.06		intercept
1930.99	786.90	St. Peter MDT	Profile Plots
1930.06	784.34		500.00
1781.99	718.16		4500.00
1748.96	703.39		The state of the s
4034.01	1775.56	Mt. Simon MDT	Top of Mount Simon
4033.95	1775.48		Top of Elmhurst
4096.48	1803.62		Top of Lombard
4116.02	1812.85		Top of Potosi
4116.98	1813.04		Bot. of Potosi
3898.44	1708.33	Mt. Simon packer tests	Bot. of St. Peter
4192.96	1846.98		
4235.24	1864.10	Mt. Simon GM11B	uni von territorio del constitución del
4155.24	1829.00	GM12	Time To State Control of the Control
4121.55	1815.60	GM13	Towns of the second of the sec

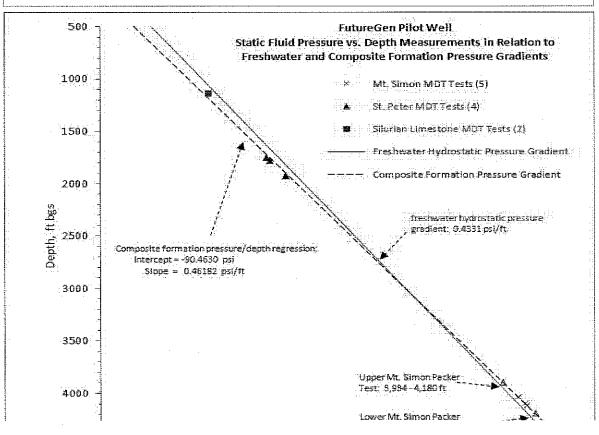
Press/Depth Regression	n Equations	
Total	Mt. Simon	n dan in
0.46182	0.46167	
-90.4630	-88.4401	
140.4454	142.3960238	
1987.7124	1989.085036	
Depth, ft bgs	Calculated P (Total Reg.) psig	Calculated P (Mt.Simon Reg.) psig
3904	1712.47	1713.93
3838	1681.99	1683.46
3581	1563.30	1564.81
2796	1200.78	1202.40
3072	1328.24	1329.82
1942	806.39	808.13

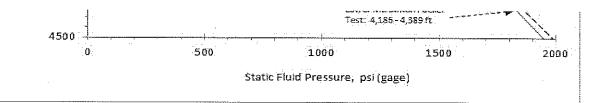
Schlumberger, Inc., 2011a. "Battelle/FutureGen#1, Morgan County Illinois: Modular Dynamics Formation Tester: Pressure/Sampling/Gamma";

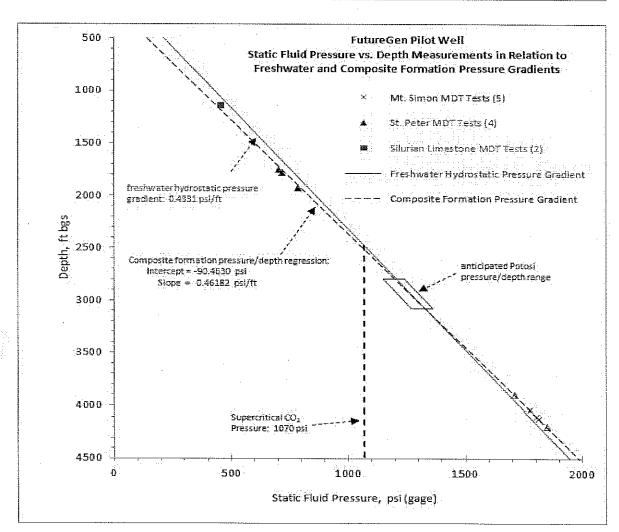
1 Schlumberger processed/analysis log Survey Date - October 27, 2011; PDF File Name: BXDS_00005_BATTELLE_FUTUREGEN 1 MDT Combined.PDF

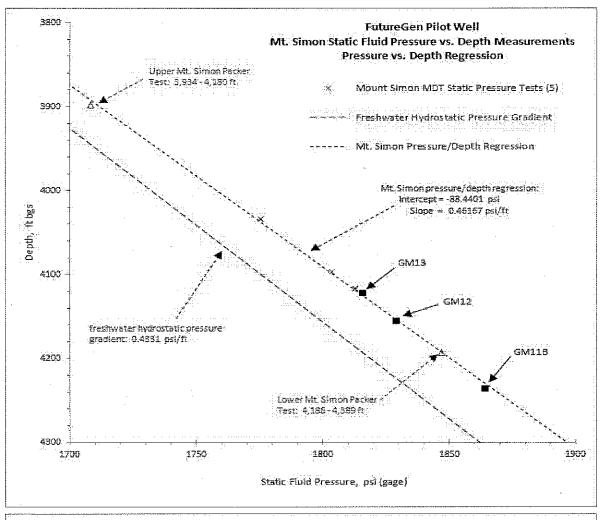
Schlumberger, Inc., 2011b. "FutureGen Industrial Alliance/FutureGen 2.0 No.1, Morgan County Illinois: Modular Dynamics Formation Tester:

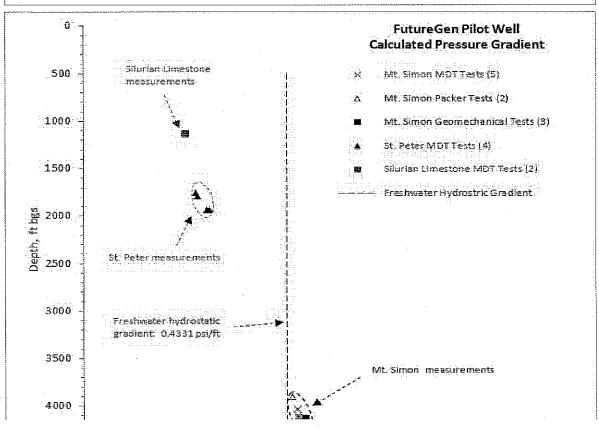

- 2 Pressure/Sampling/Gamma"; Schlumberger processed/analysis log Survey Date - December 14, 2011; Schlumberger PDS File Name: BPD8_35_Futuregen2_1_run4G_MDT_Combined.pds Kelley ME, MA Moody, ER Zeller, WH Rike, NA Berelsman, C McNeil, J Holley, C Sullivan, D Appriou, FA Spane, JA Horner, and TJ Gilmore. 2012.
- 3 "Borehole Completion and Characterization

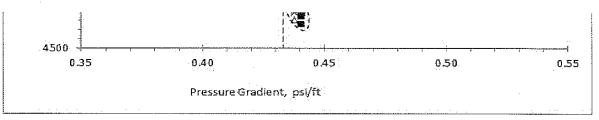

Report for the Stratigraphic Well, Morgan County, Illinois.", FGN-RPT-015/PNWD-4343, report prepared by Pacific Northwest National Laboratory, Richland WA for FutureGen Industrial Alliance, Inc. Birkholzer JT, JP Nicot, CM Oldenburg, Q Zhou, S Kraemer, and K Bandilla. 2011. "Brine flow up a well caused by pressure perturbation from geologic

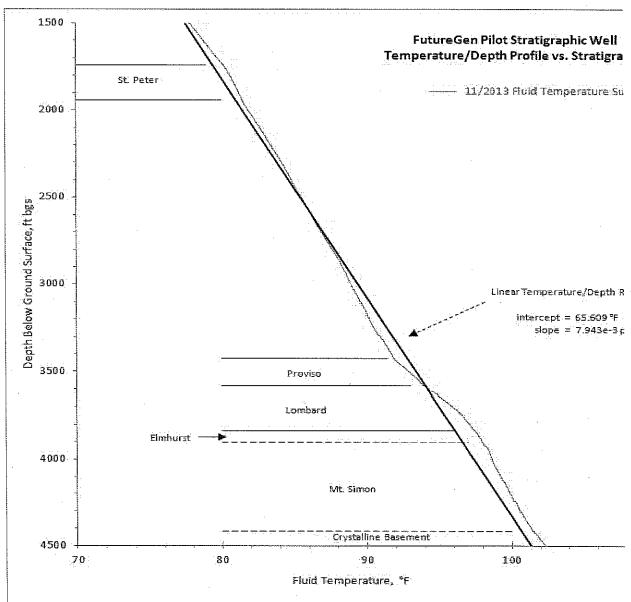

4 carbon sequestration: static and dynamic evaluations." International Journal of Greenhouse Gas Control, doe:10.1016/j.ijggc.2011.01.003.


Spane FA and RB Mercer. 1985. "HEADCO: a program for converting observed water levels and pressurem measurements to formation pressure 5 and standard hydraulic head."


RHO-BW-ST-71P, Rockwell Hanford Operations, Richland, WA.







						-
•						
			•			
			·			
	t.					
				4		
	,					
					·	
·						
	·					
	.*					
	•					
			•			
•						
		÷				
				-	4	
	•					
	·					
			4			
					•	
		•				

iphy.

irvey:

legression

osî/ft

110

EPA Pressure Front Calculation (Eqn.	1); @ existing	conditions	
Top of Mt. Simon as basis	P _{i,f}	11.62 Mpa	
	P_{ij}	1685.12 psi	
	Z ₀ -Z	====1962.00 ft	
Top of Elmhurst as basis	P _{ij}	11.41 Mpa	
	P _{i,L}	1655.56 psi	
	Z _ü -Z _i	1896.00 ft	
	P_{u}	806.39 psi	\$
(St. Peter to Mt. S	imon) Y _w	64.4943 lb/ft ³	

Top of Mt. Simon as basis 🕕	ΔP _{id}	-0.19 Mpa	
	ΔΡ _{Ι,f}	-27.35 psi	
	P_{i}	1712.47 psi	
	Z _u -Z	1962.00 ft	
Top of Elmhurst as basis	$\Delta P_{i,t}$	-0.18 Mpa	
	$\Delta P_{i,f}$		
	P ₁	1681.99 psi	
	Z _u -Z _i	1896.00 ft	
entere des compressors provinte transmissor proposer (1960-1960-1960-1960-1960-1960-1960-1960-	P_{u}	806.39 psi	ndirekustruseitaisiaisiaisekse

	-	64.4943 lb/ft ³	
	P_{u}	841.08 psi	
	Z _u -z,	1896.00 ft	
	P _{if}	1690.26 psi	
Top of Elmhurst as basis	$ P_{i,f}$	11.65 Mpa	
		1962.00 ft	
	P _{if}	1719.82 psi	
Top of Mt. Simon as basis	P _{if}	1186 Mpa	

Top of Mt. Simon as basis	ΔΡίσ		
	ΔΡ _{ι,f}	7.35 psi	
	P	1712:47 psi	
	Z _i Z _i	1962.00 ft	
Top of Elmhurst as basis	ΔP_{ij}	0.06 Mpa	
	$\Delta P_{i,f}$	8.27 psi	
	P _i	1681.99 psi	

Z _u -Z _i	1896.00 ft
P_u	841.08 psi
Υ_{w}	64.4943 lb/ft ³

Note 1: Projected static pressure for the various units based on regression relationships shown is

Projected Pressure at base of St. Peter	806.39	psig	see Note 1
Projected Pressure at top of Elmhurst	1681.99	psig	see Note 1
Projected Pressure at top of Mt. Simon	1712.47	psig	see Note 1
Depth to base of St. Peter	1942	ft bgs	
Depth to top of Elmhurst	3838	ft bgs	
Depth to top of Mt. Simon	3904	ft bgs	
Ground Surface Elevation	619	ft bgs	
Base of St. Peter Elevation	-1323	ft MSL	
Top of Elmhurst Elevation	-3219	ft MSL	
Top of Mt. Simon Elevation	-3285	ft MSL	
Calculated Specific Wt. of Mt. Simon water	64.4943	lb/ft3	$\Upsilon_{\mathbf{w}}$
Calculated Fluid Density of Mt. Simon	1.0331	g/cm3	$ ho_{w}$
freshwater hydrostatic gradient	0.4331	psi/ft	
Freshwater hydrostatic pressure: St. Peter	841.08	psi	

n "Mt. Simon Press-Regression" subfolder, for test data listed in "Combined Pressure Depth Data" subf

Birkholzer (2011) & EPA Pressure Front Calculation (Eqn. 1); @ existing conditions Top of Mt. Simon as E	asis P _{ir}
	P _{i,f}
Top of Elmhurst as b	asis P _{i,t}
	$P_{i,\ell}$
(St. Pete	P _u r to Mt. Simon) Y _w
Birkholzer (2011) & EPA Critical Pressure Change Calculation (Eqn. 2); @ existing cor	ditions
Top of Mt. Simon as ba	asis ΔΡ _{ι,f}
	P
Top of Elmhurst as ba	
	ΔP _W
	P _u
(St. Pete	r to Mt. Simon) Υ _w
Birkholzer (2011 & EPA Pressure Front Calculation (Eqn. 1); for hydrostatic St. Peter Top of Mt. Simon as b	
	P _{i,1}
Top of Elmhurst as b	asis P_{ij}
(St. Pete	P _u r to Mt. Simon) Υ _w
Birkholzer (2011 & EPA Critical Pressure Change Calculation (Eqn. 2); for hydrostatic	
Top of Mt. Simon as b	asis $\Delta P_{i,i}$
	$\begin{array}{c} P_{i} \\ Z_{i} - Z_{i} \end{array}$
Top of Elmhurst as ba	asis $\Delta P_{i,f}$

٠..

(St. Peter to Mt. Simon) Υ_w

folder

11.63 Mpa 1686.55 psi 1962.00 ft 11.42 Mpa 1656.95 psi 1896.00 ft 806.39 psi

64.7523

64.5996 lb/ft3

calculated based on HEADCO

-0.18 Mpa -25.91 psi 1712.47 psi 1962.00 ft -0.17 Mpa -25.04 psi 1681.99 psi 1896.00 ft

806.39 psi

64.5996 lb/ft³

calculated based on HEADCO

11.87 Mpa 1721.25 psi 1962.00 ft 11.66 Mpa 1691.64 psi 1896.00 ft

841.08 psi

64.5996 lb/ft³

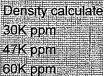
calculated based on HEADCO

1896.00 ft

841.08 psi

64.5996 lb/ft³

calculated based on HEADCO


Dynamic Viscosity Calculation for Temperature/Pressure/Salinity Conditions in centipoise (cp)

Ref: Meehan, D.N. 1980. "Estimating Water Viscosity at Reservoir Conditions", Petroleum Engineer, July 19 μ^* (dynamic viscosity, cp) = $(A+B/T)^*f(p,T)$

A = -0.04518+0.009313(%NaCl)-0.000393 (%NaCl)2

B = 70.634 + 0.09576(%NaCl)2

f(p,T) = 1 + 3.5x10-12(P)2(T-40)

				очк рош
Temp. F	P, psi	Salinity %		
97.99	1712.47	4.7		
A	-0.01009			
В	72.74934			
f(p,T)	1.00060			·
μ, ср	0.73233	temp+salinity co	1 darcy	1.06240E-11
р, ср	0.73276	& P corrected	1 cp	2.088543E-05
μ _{fw} ,	1.5304E-05	lb-sec/ft ²	$p_{ ext{sip}}$	0.999014
Res. Fluid Density ρ_{fw}	1.0331	g/cm ³	γ _{std}	62.3664
Res. Specific Fluid Wt. γ _{fw}	64.4943	lb/ft ³	P _{stp} ,	2.3590E-05
			\mathbf{p}_{stpt}	1.1295
STP k→K equivalents				
K	1000	mD	*STP conditions	
K	2.427	ft/day	*STP conditions	
1 ft/day (K) = k (mD)	412.074	SERVICE CENTER PROPERTY	*STP conditions	•
Res_Conditions_k⇒K equivalents			•	
k - k	1000	millidarcies	*Res_conditions	
TO THE TAX	3.868	ft/day	*Res_conditions	
1 (t/day/(K) = k/mp)	758513	mD	*Rec conditions	

Notes:

- 1. P estimated from projected static pressure for the top of the Mt. Simon based on regression relationships
- 2. ρ_{fw} saline water density calculator http://www.csgnetwork.com/water_density_calculator.html for Temp., P,
- 3. Salinity value (tds = 47,000 ppm) based on average MDT and composite Mt. Simon formation fluid sample

380, pp. 117-118.

d values based on Temp. and Salinity (no pressure effects) http://www.csgnetwork.com/h2o 1.01562 1.02828 1.03805

ft? lb-sec/ft² g/cm³ lb/ft³ lb-sec/ft² cp

shown in "Mt. Simon Press-Regression" subfolder, for test data listed in "Combined Pressure Depth Data and Salinity conditions shown in row 9

ss as reported in Kelley et al. (2012)

denscalc.html

ı" subfolder